

Suites et séries de fonctions.

Exercice 1. Étudier la convergence simple, puis uniforme, des suites de fonctions $(f_n)_n$ sur l'intervalle I.

a)
$$f_n(x) = \frac{x}{x^2 + n}$$
, $I = \mathbb{R}$.

d)
$$f_n(x) = x^n$$
, $I = [0, a]$, $0 \le a < 1$, puis $I = [0, 1]$.

b)
$$f_n(x) = xe^{\frac{x}{n}}, I = [0, +\infty[.$$

e)
$$f_n(x) = n^{\alpha} x (1-x)^n$$
, $I = [0,1], \ \alpha \in \mathbb{R}$.

b)
$$f_n(x) = xe^{\frac{\pi}{n}}, \ I = [0, +\infty[.$$

c) $f_n(x) = \ln\left(x + \frac{1}{n}\right), \ I =]0, +\infty[.$

Exercice 2. Soit $f_n: [0, +\infty[\to \mathbb{R} \text{ définie par } f_n(x) = \left(1 - \frac{x}{n}\right)^n \text{ si } x \le n \text{ et } f_n(x) = 0 \text{ sinon.}$

- a) Montrer que la suite $(f_n)_n$ converge simplement et déterminer sa limite.
- **b**) Montrer que la suite $(f_n)_n$ converge uniformément sur \mathbb{R}_+ .

Exercice 3 (non interversion limite intégrale). Soit f_n définie sur \mathbb{R} par $f_n(x) = n \cos^n(x) \sin(x)$.

a) Montrer que la suite $(f_n)_n$ converge simplement et déterminer sa limite f.

b) Montrer que
$$\lim_{n\to+\infty} \int_0^{\pi/2} f_n(x) dx \neq \int_0^{\pi/2} f(x) dx$$
.

Exercice 4. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue et intégrable. Déterminer $\lim_{n \to \infty} n \int_0^1 \frac{f(nt)}{1+t} dt$.

Exercice 5. Soit $(P_n)_n$ une suite de fonctions polynômes. On suppose que cette suite converge uniformément sur \mathbb{R} vers une fonction f.

- a) Montrer qu'il existe $N \in \mathbb{N}$ tel que pour tout $n \geq N$ la fonction polynôme $P_n P_N$ est constante.
- **b)** En déduire que f est une fonction polynôme.

Remarque : il est important ici d'avoir convergence uniforme sur \mathbb{R} , ou du moins sur un intervalle non-borné. Le théorème de Weierstrass affirme en effet que toute fonction continue sur un segment [a, b] est limite uniforme d'une suite de polynômes.

Exercice 6. Étudier la convergence (simple, normale, uniforme) des séries de fonctions de terme général f_n sur l'intervalle I ($I = \mathbb{R}$ lorsque ce n'est pas précisé).

a)
$$f_n(x) = \frac{e^{-nx}}{1+n^2}, I = \mathbb{R}_+.$$

c)
$$f_n(x) = \frac{1}{x}$$
 si $x = n$, $f_n(x) = 0$ sinon.
d) $f_n(x) = \frac{nx}{3n^4 + x^4}$.

b)
$$f_n(x) = \frac{x}{n^2}$$
.

d)
$$f_n(x) = \frac{nx}{3n^4 + x^4}.$$

Exercice 7. Soit f_n la fonction définie sur \mathbb{R}_+ par $f_n(x) = \frac{x}{n^2 + x^2}$.

- a) Montrer que la série $\sum f_n$ converge simplement, on note f sa somme, et étudier la convergence normale sur \mathbb{R}_+ .
- **b**) Soit $\widetilde{R}_n(x) = \sum_{k=n+1}^{2n} f_k(x)$. En minorant $\widetilde{R}_n(n)$, étudier la convergence uniforme sur \mathbb{R}_+ .
- c) Montrer que pour tout a > 0 la série $\sum f_n$ converge normalement sur [0, a] et en déduire que f est continue sur \mathbb{R}_+ .
- **d)** Montrer que la série $\sum (-1)^n f_n$ converge uniformément sur \mathbb{R}_+ mais que la convergence n'est pas normale.

Exercice 8. Pour tout $n \ge 1$, soit f_n la fonction définie sur \mathbb{R} par $f_n(x) = \frac{x}{n(1+nx^2)}$.

- a) Étudier la convergence simple de la série de fonctions $\sum f_n$. On note S la somme de cette série.
- **b)** Montrer que S est continue sur \mathbb{R} .
- c) Montrer que S est de classe C^1 sur $[a, +\infty[$ pour tout a > 0, puis que S est de classe C^1 sur \mathbb{R}_+^* .
- **d)** Montrer qu'il existe K > 0 tel que pour tout x > 1, on ait $S(x) \le \frac{K}{x}$. En déduire la limite de S en $+\infty$.
- e) Que vaut $\lim_{x\to 0^+} S(x)$?
- f) Montrer que $\lim_{x\to 0^+} S(x)/x = +\infty$. (On pourra commencer par donner la limite de $T_N(x) =$

 $\frac{1}{x}\sum_{n=1}^{N}f_n(x)$ en 0^+). Que peut on en déduire pour le graphe de S? La fonction S est-elle dérivable sur \mathbb{R} ?

Exercice 9 (Fonction ζ de Riemann). On considère la série de fonctions $\zeta(x) = \sum_{n \geq 1} \frac{1}{n^x}$.

- a) Montrer que la série converge si et seulement si x > 1. On considèrera par la suite la fonction ζ définie sur l'intervalle $I =]1, +\infty[$.
- **b)** Montrer que pour tout a > 1 la série converge uniformément sur $[a, +\infty[$. En déduire que la fonction ζ est continue sur I.
- c) Montrer que pour tout $n \ge 1$ la fonction $f_n(x) = \frac{1}{n^x}$ est de classe C^{∞} et calculer $f_n^{(k)}(x)$ pour $k \ge 1$. En déduire que la fonction ζ est de classe C^{∞} .
- **d**) Montrer que la fonction ζ est strictement décroissante et strictement convexe sur I.
- e) Déterminer $\lim_{x\to +\infty}\zeta(x)$ et montrer que $\zeta(x)\sim \frac{1}{x-1}$ lorsque x tend vers 1. On pourra utiliser une comparaison série / intégrale.